ADVERTISEMENT

JUPITER SCIENCE

Featured Articles on: SETS

De Morgan’s laws

De Morgan’s laws

De Morgan’s First Law The complement of the union of two sets is equal to the intersection of their complements i.e. (A ∪ B )' = A' ∩ B' De Morgan’s Second Law The complement of the intersection of two sets is equal to the union of their complements i.e. (A ∩ B )’ =...

Cartesian Product of Sets

A cartesian product between two sets is defined as the set consisting of all possible ordered pairs that can be formed by taking one element from each of the sets at a given time. If A and B are two sets such that a ∈ A and b ∈ B, then the cartesian product between A...

Ordered Pairs

An ordered pair is a 2-tuple formed by taking two elements (generally numbers but can be alphabets, characters, words, or symbols). The general form of representation is (a, b) where a and b represent two distinct objects. The important thing with ordered pairs is...

Cartesian Product

The cartesian product of two sets A and B is defined as a set formed by all the possible ordered pairs of elements from A and B, such that the first element comes from set A and the second element comes from set B. The cartesian product is denoted as A × B....

Intersection operation on two sets

Intersection operation on two sets

The intersection of two sets A & B is defined as a set that contains only those members which are common to both A and B. The intersection operation is denoted by the symbol ∩. Remember, for two disjoint sets (sets having no common elements), the...

Union of two sets

Union of two sets

The union of two sets A & B is defined as a set that contains all the member elements of A and B. the union operation is denoted by the symbol ∪. One point to remember here is that the union of two or more sets always gives a set with distinct...

Complement of a set

Complement of a set

The complement of a set A (that is a subset of a universal set U) is defined as a set that contains all the member elements and all subsets of U that are not part of the set A. The complement of a set is denoted using the symbol ‘ or c. Hence, A’ =...

Venn Diagrams in Sets

Venn Diagrams in Sets

Venn diagrams are the pictorial or graphical representation of sets and the various relationships that exist between sets. The representation consists of a rectangular box representing the universal set(U). All sets that are in context are drawn as circles...