ADVERTISEMENT

JUPITER SCIENCE

THEOREM# \( \lim_{\theta\to0} \dfrac{sinθ}{θ} \) = 1

We have  \( \lim_{\theta\to0} { \sin\theta \over \theta } \) = 1

Consider the below diagram.

We have

r = radius of the circle.
A = centre of the circle.
The sector ⌔ formed by the arc BD subtends an angle θ at the centre.

Case 1 : θ > 0 i.e. θ is +ve

Let 0 ≤ θ ≤ \( \pi \over 2\)

area △AOB = \( {1 \over 2} × BD × OA \) = \( {r \over 2} BD \)

area △AOB = \( {BD \over OB } \) = \( {\sin\theta} \)

⇒ BD =  \(r \, {\sin\theta} \)

∴ area △AOB = \( {1 \over 2} \,r × r  {\sin\theta} \) = \( {1 \over 2} r^2 \sin\theta \)

area ⌔ AOB = \( {\theta \over 2?}  ×    ? \, r^2 \)  = \(   { 1 \over 2 } r^2 \theta \)

area △AOC = \( {1 \over 2} × OA × CA \) = \(   { 1 \over 2 } r CA \)

also, \( { AC \over OA } = \tan \theta \)

⇒ AC = OA \( \tan\theta)\) = \( r tan\theta \)

∴ area △AOC = \( {1 \over 2} r^2 \tan\theta \)

Case 2 : θ < 0 i.e. θ is -ve

In this case, let θ = -\( \beta \)

then

\( \lim_{\theta\to0} { \sin\theta \over \theta} \) = \( \lim_{\beta\to0} {\sin (-\beta) \over -\beta} \)

= \( \lim_{\beta\to0} {\sin \beta \over \beta} \) = 1

Thus, 

\(\mathbf{lim_{θ\to0} } \mathbf{sinθ \over θ } \) = 1

TAGS: LIMITS

Comments

What do you think?

0 Comments

Submit a Comment

Your email address will not be published. Required fields are marked *

Recommended Reads for You

Limits of Functions: A Complete Guide

Limits of Functions: A Complete Guide

Understanding **limits of functions** is essential in calculus. This guide explains the epsilon-delta definition, theorems, and applications to help you master this fundamental concept.

read more
Limits at Infinity

Limits at Infinity

Learn how to solve Limits at Infinity with this comprehensive guide. Understand the concepts and techniques through clear examples and step-by-step solutions.

read more
Share This