ADVERTISEMENT

JUPITER SCIENCE

Featured Articles on: LIMITS

Scientific Notations

Theorem# Limit of tanθ as θ → 0

Proof : We have, lim\(_{θ\to 0} { \dfrac {\mathrm tan \mathrm θ}{ \mathrm θ} }   \) = lim\(_{θ\to 0} { \dfrac {\mathrm \sin \mathrm θ} {\mathrm θ \mathrm \cos\mathrm θ} }   \)      \( \{∵ \tan\theta =  \dfrac…

Theorem# Limit of cosθ as θ → 0

Theorem# Limit of cosθ as θ → 0

As θ → 0, we have cosθ → 1 Proof : When θ = 0, We have, lim\(_{θ\to 0} \cos \)θ = cos0 = 1   { ∵ cos0 = 1 } Hence, lim\(_{θ\to 0} \cos \)θ = 1