ADVERTISEMENT

JUPITER SCIENCE

Union of two sets

The union of two sets A & B is defined as a set that contains all the member elements of A and B. the union operation is denoted by the symbol .

One point to remember here is that the union of two or more sets always gives a set with distinct members i.e., in case any of the sets contain any duplicate values or if the result of combining the elements of the set results in duplicate values, the net outcome of the union operation will always result in distinct elements.

Example ⇒

If A = { 1, 2, 3, 4 } and B = { 1, 4, 5, 6 }

Then A ∪ B = { 1, 2, 3, 4, 5, 6 } and not { 1, 1, 2, 3, 4, 4, 5, 6 }

Similarly, if A = { 1, 1, 1, 2, 3 } and B = { 1, 1, 2, 2, 4 }

Then A ∪ B = { 1, 2, 3, 4 }

Venn Diagram representation of Union operation
TAGS:

Comments

What do you think?

0 Comments

Submit a Comment

Your email address will not be published. Required fields are marked *

Recommended Reads for You

De Morgan’s laws

De Morgan’s laws

De Morgan’s First Law The complement of the union of two sets is equal to the intersection of their complements i.e. (A ∪ B )' = A' ∩ B' De Morgan’s Second Law The complement of the intersection of two sets is equal to the union of their complements i.e. (A ∩ B )’ =...

read more

Cartesian Product of Sets

A cartesian product between two sets is defined as the set consisting of all possible ordered pairs that can be formed by taking one element from each of the sets at a given time. If A and B are two sets such that a ∈ A and b ∈ B, then the cartesian product between A...

read more

Ordered Pairs

An ordered pair is a 2-tuple formed by taking two elements (generally numbers but can be alphabets, characters, words, or symbols). The general form of representation is (a, b) where a and b represent two distinct objects. The important thing with ordered pairs is...

read more
Share This