ADVERTISEMENT

JUPITER SCIENCE

Derive the Mean or Expected Value of Random Variable that has Poisson Distribution

Derive the Mean or Expected Value of Random Variable that has Poisson Distribution


or Prove that for Poisson Distribution, \( μ = E(X) = λ \)


We have \( P(X=k) = λ^{k} . \dfrac{e^{-λ}}{k!} \) for k = 0,1,2,…


We now derive the Expected Value(μ) of Poisson Distribution i.e. \(E(X)\)

By definition, we have \( E(X) = \displaystyle \sum_{k=0}^∞ k \cdot P(X) \)

or \( E(X) = \displaystyle \sum_{k=0}^∞ k \cdot {λ^k} \cdot \dfrac{e^{-λ}}{k!} \)

or \( E(X) = e^{-λ} \cdot\displaystyle \sum_{k=0}^∞ k \cdot \dfrac{{λ^k}}{k!} \)

or \( E(X) = e^{-λ} \cdot\displaystyle \sum_{k=1}^∞ k \cdot \dfrac{{λ^k}}{k!} \)

Changing the lower index of summation to 1 as k=0 leads to nothing

or \( E(X) = e^{-λ} \cdot\displaystyle \sum_{k=1}^∞ \dfrac{{λ^k}}{(k-1)!} \)

or \( E(X) = λ \cdot e^{-λ} \cdot\displaystyle \sum_{k=1}^∞ \dfrac{{λ^{(k-1)}}}{{(k-1)}!} \)
Taking λ out —–(1)

Now, for the expression \( \displaystyle \sum_{k=1}^∞ \dfrac{{λ^{(k-1)}}}{{(k-1)}!} \),
let k-1=r.


The expression now becomes \( \displaystyle \sum_{r=0}^∞ \dfrac{{λ^{(r)}}}{{(r)}!} \) which is nothing but \(e^{λ} \) only.

Hence from equation (1),

\( E(X) = λ \cdot e^{-λ} \cdot\displaystyle \sum_{k=1}^∞ \dfrac{{λ^{(k-1)}}}{{(k-1)}!} \)= \( λ \cdot e^{-λ} \cdot e^{λ} \)

or \( E(X) = λ \)

Comments

What do you think?

0 Comments

Submit a Comment

Your email address will not be published. Required fields are marked *

Recommended Reads for You

Share This