Conquer the CBSE Board Exams 2025 with our guide! Learn effective study strategies, time management tips, and overcome exam anxiety for success.
Category Archives
Recent Articles in Mathematics
Find the limit: \( \lim_{x \to 3} (2x + 5) \)
Find \( \lim_{x \to 3} (2x + 5) \) Solution:To solve this limit, we substitute the value of \( x \) directly because the function is continuous at \( x = 3 \).\( \lim_{x \to 3} (2x + 5) = 2(3) + 5 = 6 + 5 = 11 \)
Morning Refresher – 5 Basic Problems in Limits to Boost Your Mind
5 Basic Problems on Limits just to refresh your mind. Problem 1 Find the limit: \( \lim_{x \to 2} (3x - 4) \) Solution: To solve this limit, we substitute the value of \(x\) directly because the function is continuous at \(x = 2\). \[ \lim_{x \to 2} (3x - 4) = 3(2) -...
THEOREM# \( \lim_{\theta\to0} \dfrac{sinθ}{θ} \) = 1
We have \( \lim_{\theta\to0} { \sin\theta \over \theta } \) = 1 Consider the below diagram. We have r = radius of the circle.A = centre of the circle.The sector ⌔ formed by the arc BD subtends an angle θ at the centre. Case 1 : θ > 0 i.e. θ is +ve Let 0 ≤ θ ≤ \(...
Theorem# \( \lim_{x \to a} { x^n – a^n \over x – a } = na^{n-1} \)
To prove : lim\( _{x \to a} { x^n - a^n \over x - a } = na^{n-1} \) where n is a rational number Proof: Let \( x = a + h \) Then as \(x \to a \), we have \(h \to 0 \) Now, \( \lim_{x \to a} { x^n - a^n \over x - a } = \lim_{h \to 0} { (a...
Theorem# Limit of tanθ as θ → 0
Proof : We have, lim\(_{θ\to 0} { \dfrac {\mathrm tan \mathrm θ}{ \mathrm θ} } \) = lim\(_{θ\to 0} { \dfrac {\mathrm \sin \mathrm θ} {\mathrm θ \mathrm \cos\mathrm θ} } \) \( \{∵ \tan\theta = \dfrac...
Theorem# Limit of cosθ as θ → 0
As θ → 0, we have cosθ → 1 Proof : When θ = 0, We have, lim\(_{θ\to 0} \cos \)θ = cos0 = 1 { ∵ cos0 = 1 } Hence, lim\(_{θ\to 0} \cos \)θ = 1
Derivative of \(\mathsf { x^{n} }\) using the First Principle
Let y = \(\mathsf {x^{n} }\) ∴ y + δy = \(\mathsf { {(x + δx)^{n}} }\) ∴ δy = y + δy - y = \(\mathsf { (x + δx)^{n} }\) - \(\mathsf { x^{n} }\) or δy = \(\mathsf { [\text{ }^{n}C_0 x^{n}{(δx)}^{0} }\) + \(\mathsf {\text{ }^{n}C_1 x^{n-1}{(δx)}^{1}}\) + \(\mathsf...
Derivative of \({e}^x\) using First Principle
Derivative of \({e}^x\) using the First Principle Let \(y\) = \({e}^x\)∴ \(y + δy\) = \({e}^{x + δx}\)∴ \(δy\) = \({e}^{x + δx}\) - \({e}^x\)or \(δy\) = \({e}^{x}\) . \( [ {e}^{δx} - 1 ]\)Dividing each side by δx </h3>or \(\dfrac {δy}{δx}\) = \( \dfrac { {e}^{x}...
Derivative of sinθ using the First Principle
Derivative of \( sinθ \) using the First Principle Let \(y\) = \( sinθ \) ∴ \(y + δy\) = \( sin(θ + δθ) \) ∴ \(δy\) = \( sin(θ + δθ) \) - \( sinθ \)From Trigonometry , we have \( sin(A-B) \) = 2.\( sin \dfrac {(A-B)}{2} \).\( cos \dfrac {(A+B)}{2} \)Using the above...
Derivative of cosθ using the First Principle
Derivative of \( cosθ \) using the First Principle Let \(y\) = \( cosθ \) ∴ \(y + δy\) = \( cos(θ + δθ) \) ∴ \(δy\) = \( cos(θ + δθ) \) - \( cosθ \)From Trigonometry , we have \( cos(A-B) \) = -2.\( sin \dfrac {(A+B)}{2} \).\( sin \dfrac {(A-B)}{2} \)Using the above...