Learn why the harmonic series despite growing slowly doesn't converge. Explore different explanations for this fascinating mathematical concept.
Category Archives
Recent Articles in Mathematics
What is the Exponential Limit of x^x as x approaches 0+?
Discover the fascinating exponential limit of x^x as x approaches 0+. Learn the solution using logarithms and L'Hôpital's rule.
Limit Evaluation Made Easy with L'Hôpital's Rule
Learn how L'Hôpital's Rule simplifies limit evaluation. This guide will help you solve limits efficiently.
Understanding L'Hôpital's Rule for Limits: A Comprehensive Guide
Learn how L'Hôpital's rule helps evaluate indeterminate forms in limits. This guide provides a complete explanation and examples.
Understanding Implicit Differentiation and Differential Equations
Explore implicit differentiation and its relation to differential equations in our new quiz feedback.
Understanding Sophie Germain Primes: Properties Applications and Algorithms
Discover Sophie Germain primes special prime numbers with unique properties. Learn about their relation to safe primes applications in cryptography and how to identify them using Python.
Proving the Generalized Function Equality for Cosine Series
Prove the equality of cosine series in generalized functions. Learn how to manipulate trigonometric series for advanced applications.
Finding the Value of ‘a’ for Piecewise Function Continuity at x = 0
Determine the value of ‘a’ to ensure continuity of a piecewise function at x = 0 using limits and Taylor series.
Finding the Limit of a Trigonometric Function: Limit of Cosine to the Power of x
Calculate the limit of cos(√x) raised to the power of 1/x as x approaches 0 from the right. Learn the Taylor expansion method for solving this type of limit problem.
Evaluating the Exponential and Logarithmic Limit: x^x as x approaches 0+
Learn how to evaluate the limit of x^x as x approaches 0 from the positive side using logarithms and L’Hôpital’s rule. Find the answer!
Finding the Limit Using L’Hôpital’s Rule: x ln(1 + 1/x)
Learn how to evaluate the limit of x times the natural log of (1 + 1/x) as x approaches infinity using L’Hôpital’s Rule.
Evaluating the Trigonometric Limit: lim x→0 (sin(5x) – sin(3x))/x^3
Find the limit of a trigonometric expression as x approaches 0. Learn how to use trigonometric identities to solve this problem.
Understanding Vectors in Mathematics: Definition Operations and Applications
Learn about vectors in mathematics their properties and how they’re used in physics computer graphics and machine learning.
Proving Mathematical Propositions: Direct Indirect and Other Methods
Learn various methods for proving mathematical statements including direct proof indirect proof (contradiction and contrapositive) proof by cases and mathematical induction. Explore examples and applications.
Navigating the CBSE Board Exams 2025: A Comprehensive Guide
Conquer the CBSE Board Exams 2025 with our guide! Learn effective study strategies, time management tips, and overcome exam anxiety for success.
Find the limit: \( \lim_{x \to 3} (2x + 5) \)
Find \( \lim_{x \to 3} (2x + 5) \) Solution:To solve this limit, we substitute the value of \( x \) directly because the function is continuous at \( x = 3 \).\( \lim_{x \to 3} (2x + 5) = 2(3) + 5 = 6 + 5 = 11 \)
Morning Refresher – 5 Basic Problems in Limits to Boost Your Mind
5 Basic Problems on Limits just to refresh your mind. Problem 1 Find the limit: \( \lim_{x \to 2} (3x - 4) \) Solution: To solve this limit, we substitute the value of \(x\) directly because the function is continuous at \(x = 2\). \[ \lim_{x \to 2} (3x - 4) = 3(2) -...
THEOREM# \( \lim_{\theta\to0} \dfrac{sinθ}{θ} \) = 1
We have \( \lim_{\theta\to0} { \sin\theta \over \theta } \) = 1 Consider the below diagram. We have r = radius of the circle.A = centre of the circle.The sector ⌔ formed by the arc BD subtends an angle θ at the centre. Case 1 : θ > 0 i.e. θ is +ve Let 0 ≤ θ ≤ \(...
Theorem# \( \lim_{x \to a} { x^n – a^n \over x – a } = na^{n-1} \)
To prove : lim\( _{x \to a} { x^n - a^n \over x - a } = na^{n-1} \) where n is a rational number Proof: Let \( x = a + h \) Then as \(x \to a \), we have \(h \to 0 \) Now, \( \lim_{x \to a} { x^n - a^n \over x - a } = \lim_{h \to 0} { (a...
Theorem# Limit of tanθ as θ → 0
Proof : We have, lim\(_{θ\to 0} { \dfrac {\mathrm tan \mathrm θ}{ \mathrm θ} } \) = lim\(_{θ\to 0} { \dfrac {\mathrm \sin \mathrm θ} {\mathrm θ \mathrm \cos\mathrm θ} } \) \( \{∵ \tan\theta = \dfrac...
Theorem# Limit of cosθ as θ → 0
As θ → 0, we have cosθ → 1 Proof : When θ = 0, We have, lim\(_{θ\to 0} \cos \)θ = cos0 = 1 { ∵ cos0 = 1 } Hence, lim\(_{θ\to 0} \cos \)θ = 1
Derivative of \(\mathsf { x^{n} }\) using the First Principle
Let y = \(\mathsf {x^{n} }\) ∴ y + δy = \(\mathsf { {(x + δx)^{n}} }\) ∴ δy = y + δy - y = \(\mathsf { (x + δx)^{n} }\) - \(\mathsf { x^{n} }\) or δy = \(\mathsf { [\text{ }^{n}C_0 x^{n}{(δx)}^{0} }\) + \(\mathsf {\text{ }^{n}C_1 x^{n-1}{(δx)}^{1}}\) + \(\mathsf...
Derivative of \({e}^x\) using First Principle
Derivative of \({e}^x\) using the First Principle Let \(y\) = \({e}^x\)∴ \(y + δy\) = \({e}^{x + δx}\)∴ \(δy\) = \({e}^{x + δx}\) - \({e}^x\)or \(δy\) = \({e}^{x}\) . \( [ {e}^{δx} - 1 ]\)Dividing each side by δx </h3>or \(\dfrac {δy}{δx}\) = \( \dfrac { {e}^{x}...
Derivative of sinθ using the First Principle
Derivative of \( sinθ \) using the First Principle Let \(y\) = \( sinθ \) ∴ \(y + δy\) = \( sin(θ + δθ) \) ∴ \(δy\) = \( sin(θ + δθ) \) - \( sinθ \)From Trigonometry , we have \( sin(A-B) \) = 2.\( sin \dfrac {(A-B)}{2} \).\( cos \dfrac {(A+B)}{2} \)Using the above...
Derivative of cosθ using the First Principle
Derivative of \( cosθ \) using the First Principle Let \(y\) = \( cosθ \) ∴ \(y + δy\) = \( cos(θ + δθ) \) ∴ \(δy\) = \( cos(θ + δθ) \) - \( cosθ \)From Trigonometry , we have \( cos(A-B) \) = -2.\( sin \dfrac {(A+B)}{2} \).\( sin \dfrac {(A-B)}{2} \)Using the above...