ADVERTISEMENT

JUPITER SCIENCE

Theorem# Limit of tanθ as θ → 0

Scientific Notations

Proof :

We have,

lim\(_{θ\to 0} { \dfrac {\mathrm tan \mathrm θ}{ \mathrm θ} }   \) = lim\(_{θ\to 0} { \dfrac {\mathrm \sin \mathrm θ} {\mathrm θ \mathrm \cos\mathrm θ} }   \)      \( \{∵ \tan\theta =  \dfrac {\sin\theta}{\cos\theta}  \} \)

 = lim\(_ \mathrm {θ\to 0}  \dfrac {\mathrm{\sin θ} } { \mathrm θ} \) × lim\(_ \mathrm {θ\to 0} \mathrm{cos θ} \)    \( \{ ∵\) lim\(_{x\to y}f(x)g(x)\) = lim\(_{x\to y}f(x)\)  . lim\(_{x\to y}g(x) \} \) 

= 1 × 1

= 1

Hence,

lim\(_{θ\to 0} \tan\)θ = 1

TAGS: LIMITS

Comments

What do you think?

0 Comments

Submit a Comment

Your email address will not be published. Required fields are marked *

Recommended Reads for You

Limits at Infinity

Limits at Infinity

Learn how to solve Limits at Infinity with this comprehensive guide. Understand the concepts and techniques through clear examples and step-by-step solutions.

read more
Trigonometric Limit

Trigonometric Limit

Learn to evaluate the Trigonometric Limit. The solution involves simplifying the expression and applying limit theorems. The final result is 5.

read more
Share This