To prove : lim\( _{x \to a} { x^n – a^n \over x – a } = na^{n-1} \) where n is a rational number
Proof:
Let \( x = a + h \)
Then as \(x \to a \), we have \(h \to 0 \)
Now, \( \lim_{x \to a} { x^n – a^n \over x – a } = \lim_{h \to 0} { (a + h)^n – a^n \over { a + h – a } } \)
= \( \lim_{h \to 0} { a^n ( 1 + {h \over a} )^n – a^n \over h } \) { Taking \( a^n \) out as a common factor }
= \( \lim_{h \to 0} { a^n [ ( 1 + {h \over a} )^n – 1 ] \over h } \)
= \( \lim_{h \to 0} { a^n [ \{ 1 + {n \over 1! }( { h \over a} )^1 + {n(n-1) \over 2! }( { h \over a} )^2 + {n(n-1)(n-2) \over 3! }( { h \over a} )^3 + … + {n(n-1)(n-2)…3.2.1 \over n! } ( { h \over a} )^n \} – 1 ] \over h } \)
= \( \lim_{h \to 0} { a^n [ {n \over 1! }( { h \over a} )^1 + {n(n-1) \over 2! }( { h \over a} )^2 + {n(n-1)(n-2) \over 3! }( { h \over a} )^3 + … + {n(n-1)(n-2)…3.2.1 \over n! } ( { h \over a} )^n ] \over h } \)
= \( \lim_{h \to 0} { a^n.n.h [ {1 \over 1! } { 1 \over a^1} + {(n-1) \over 2! } { h^1 \over a^2} + {(n-1)(n-2) \over 3! } { h^2 \over a^3} + … + {(n-1)(n-2)…3.2.1 \over n! } { h^{n-1} \over a^n} ] \over h } \) { Taking n & h out as common factor }
= \( \lim_{h \to 0} { a^n.n.{h \over a} [ {1 \over 1! } + {(n-1) \over 2! } ({ h \over a})^1 + {(n-1)(n-2) \over 3! } ({ h \over a})^2 + … + {(n-1)(n-2)…3.2.1 \over n! } ({ h \over a})^{n-1} ] \over h } \)
= \( \lim_{h \to 0} { na^{n-1} \, [ {1 \over 1! } + {(n-1) \over 2! } ({ h \over a})^1 + {(n-1)(n-2) \over 3! } ({ h \over a})^2 + … + {(n-1)(n-2)…3.2.1 \over n! } ({ h \over a})^{n-1} ] } \)
= \( n a ^{n-1}\)
0 Comments