ADVERTISEMENT

JUPITER SCIENCE

Multiplication Rule in Probability

The multiplication rule in probability is used to find the probability of the intersection of two or more independent events. In other words, it helps us calculate the probability of both event A and event B happening or the probability of multiple events occurring together.

For two independent events A and B, the multiplication rule states that:

P(A ∩ B)=P(A)⋅P(B)

Where:

    P(A ∩ B) is the probability of both event A and event B occurring (the intersection of A and B).
    P(A) is the probability of event A occurring.
    P(B) is the probability of event B occurring.

The multiplication rule works under the assumption that events A and B are independent. Two events are considered independent if the occurrence of one event does not affect the occurrence of the other. Mathematically,
P(A ∩ B)=P(A)⋅P(B) holds true only when events A and B are independent.

We also Published


The multiplication rule can be extended to more than two independent events. For three independent events A, B, and C:

P(A ∩ B ∩ C)=P(A)⋅P(B)⋅P(C)

And so on, for any number of independent events.
Keep in mind that if the events are not independent, the multiplication rule cannot be applied directly. In such cases, the joint probability

P(A ∩ B) must be calculated using the appropriate methods or additional information about the events’ relationships.

Comments

What do you think?

0 Comments

Submit a Comment

Your email address will not be published. Required fields are marked *

Recommended Reads for You

Addition Rule in Probability

Addition Rule in Probability

Addition Rule calculates the probability of one or more events occurring. For mutually exclusive events, add individual probabilities. For non-mutually exclusive events, add individual probabilities and subtract the probability of both events occurring.

read more
Share This