ADVERTISEMENT

JUPITER SCIENCE

Derive the Second Moment of the Poisson Distribution

Computation of the Second Moment of Poisson Distribution

or in other words,

Prove that for Poisson Distribution, the second moment is given by \( E(X^2) = λ(λ+1) \)

For Poisson Distribution, we have

\( P(X=k) = λ^{k} . \dfrac{e^{-λ}}{k!} \) for k = 0,1,2,…

We now derive the second moment of Poisson Distribution i.e. \(E(X^2)\)

By definition, we have \( E(X^2) = \displaystyle \sum_{k=0}^∞ k^2 . \dfrac{e^{-λ}}{k!} \)

or \( E(X^2) = e^{-λ} . \displaystyle \sum_{k=0}^∞ \dfrac { {k^2} . {λ^k} } {k!} \)
or \( E(X^2) = e^{-λ} . \displaystyle \sum_{k=0}^∞ \dfrac { {k} . {λ^k} } {(k-1)!} \)

or \( E(X^2) = e^{-λ} . \displaystyle \sum_{k=1}^∞ \dfrac { {k} . {λ^k} } {(k-1)!}  \)

Starting the summation from 1 as k=0 would lead to nothing

or \( E(X^2) = e^{-λ} . \displaystyle \sum_{k=1}^∞ \dfrac { {(k-1)} . {λ^k} } {(k-1)!} + e^{-λ} . \displaystyle \sum_{k=1}^∞ \dfrac { {1} . {λ^k} } {(k-1)!} \)

or \( E(X^2) = e^{-λ} . \displaystyle \sum_{k=2}^∞ \dfrac { {(k-1)} . {λ^k} } {(k-1)!} + e^{-λ} . \displaystyle \sum_{k=1}^∞ \dfrac { {1} . {λ^k} } {(k-1)!} \)

For the first summation, we changed the start index to 2 as k=1 would lead to 0 and is meaningless.

 

or \( E(X^2) = e^{-λ} . \displaystyle \sum_{k=2}^∞ \dfrac { {λ^k} } {(k-2)!} + e^{-λ} . \displaystyle \sum_{k=1}^∞ \dfrac { {λ^k} } {(k-1)!} \)

or \( E(X^2) = {λ^2} . e^{-λ} . \displaystyle \sum_{k=2}^∞ \dfrac { {λ^{k-2} } } {(k-2)!} + λ . e^{-λ} . \displaystyle \sum_{k=1}^∞ \dfrac { {λ^{k-1}} } {(k-1)!} \qquad\)    – – – – – (1)

Now, for \( \displaystyle \sum_{k=2}^∞ \dfrac { {λ^{k-2} } } {(k-2)!} \quad\) Putting k-2 = r , we get

\( \displaystyle \sum_{k=2}^∞ \dfrac { {λ^{k-2} } } {(k-2)!} = \displaystyle \sum_{r=0}^∞ \dfrac { {λ^{r} } } {(r)!} = e^λ \quad\)

Similarly,

\( \displaystyle \sum_{k=1}^∞ \dfrac { {λ^{k-1}} } {(k-1)!} = e^λ \quad\)

Thus, our expression in eqn(1) becomes

\( E(X^2) = {λ^2} . e^{-λ} . e^λ + λ . e^{-λ} . e^λ\)
or \( E(X^2) = {λ^2} + λ \)
or \( E(X^2) = λ(λ+1) \) Our Required Expression for Poisson Distribution Second Moment

 

Comments

What do you think?

0 Comments

Submit a Comment

Your email address will not be published. Required fields are marked *

Recommended Reads for You

Share This