ADVERTISEMENT

JUPITER SCIENCE

Find the limit: \( \lim_{x \to 3} (2x + 5) \)

Find \( \lim_{x \to 3} (2x + 5) \)

Solution:
To solve this limit, we substitute the value of \( x \) directly because the function is continuous at \( x = 3 \).
\( \lim_{x \to 3} (2x + 5) = 2(3) + 5 = 6 + 5 = 11 \)

TAGS: EXAM+ | LIMITS

Comments

What do you think?

16 Comments

  1. Mike Miers

    Hi there,

    My name is Mike from Monkey Digital,

    Allow me to present to you a lifetime revenue opportunity of 35%
    That’s right, you can earn 35% of every order made by your affiliate for life.

    Simply register with us, generate your affiliate links, and incorporate them on your website, and you are done. It takes only 5 minutes to set up everything, and the payouts are sent each month.

    Click here to enroll with us today:
    https://www.monkeydigital.org/affiliate-dashboard/

    Think about it,
    Every website owner requires the use of search engine optimization (SEO) for their website. This endeavor holds significant potential for both parties involved.

    Thanks and regards
    Mike Miers

    Monkey Digital

    Reply

Submit a Comment

Your email address will not be published. Required fields are marked *

Recommended Reads for You

Limits of functions : Limits of functions: A Complete Guide : Learn the basics of **limits of functions** with our comprehensive guide. Explore definitions, theorems, and applications to build a strong calculus foundation.

Limits of Functions: A Complete Guide

Understanding **limits of functions** is essential in calculus. This guide explains the epsilon-delta definition, theorems, and applications to help you master this fundamental concept.

Squeeze Theorem : Squeeze Theorem: Mastering Limits : Discover the power of the Squeeze Theorem! Learn how to find limits using bounding functions, with clear explanations and practical examples. Master this essential calculus technique!

Limits: The Squeeze Theorem Explained

The Squeeze Theorem is a calculus concept that uses bounding functions to determine the limit of a function. The article explains how it works and provides examples.

Limits at Infinity : Limits at Infinity: A Step-by-Step Guide : Explore Limits at Infinity! This guide provides clear explanations, step-by-step solutions, and examples to help you master calculus concepts. Learn how to evaluate limits at infinity.

Limits at Infinity

Learn how to solve Limits at Infinity with this comprehensive guide. Understand the concepts and techniques through clear examples and step-by-step solutions.

Share This