ADVERTISEMENT

JUPITER SCIENCE

Derivative of \(\mathsf { x^{n} }\) using the First Principle

Let y = \(\mathsf {x^{n} }\)

∴ y + δy = \(\mathsf { {(x + δx)^{n}} }\)

∴ δy = y + δy – y = \(\mathsf { (x + δx)^{n} }\) – \(\mathsf { x^{n} }\)

or δy = \(\mathsf { [\text{ }^{n}C_0 x^{n}{(δx)}^{0} }\) + \(\mathsf {\text{ }^{n}C_1 x^{n-1}{(δx)}^{1}}\) + \(\mathsf {\text{ }^{n}C_2 x^{n-2}{(δx)}^{2}}\) + \(\mathsf {\text{ }^{n}C_3 x^{n-3}{(δx)}^{3}}\) \(\mathsf {+\ … higher\ powers\ of\ δx\ ] }\) – \(\mathsf {x^{n} }\)

or δy = \(\mathsf { [\text{ }^{n}C_0 x^{n} }\) + \(\mathsf {\text{ }^{n}C_1 x^{n-1}{(δx)}^{1}}\) + \(\mathsf {\text{ }^{n}C_2 x^{n-2}{(δx)}^{2}}\) + \(\mathsf {\text{ }^{n}C_3 x^{n-3}{(δx)}^{3}}\) \(\mathsf{+\ … \ ]} \) – \(\mathsf {x^{n} }\)

Now, \(\mathsf { ^{n}C_0 x^{n} = 1.x^{n} = x^{n} }\)

Cancelling \(\mathsf { x^{n} }\) on both sides, we get

δy = \(\mathsf{ [\text{ }^{n}C_1 x^{n-1}{(δx)}^{1} }\) + \(\mathsf{ \text{ }^{n}C_2 x^{n-2}{(δx)}^{2}}\) + \(\mathsf {\text{ }^{n}C_3 x^{n-3}{(δx)}^{3}}\) \(\mathsf{+\ … \ ]} \)

Dividing each side by δx, we get

\(\mathsf { \dfrac {δy}{δx} }\) = \(\mathsf{ [\text{ }^{n}C_1 x^{n-1} }\) + \(\mathsf{ \text{ }^{n}C_2 x^{n-2}{(δx)}}\) + \(\mathsf {\text{ }^{n}C_3 x^{n-3}{(δx)}^{2}}\) \(\mathsf{+\ … \ ]} \)

∴ \(\mathsf { \dfrac {dy}{dx} }\) =  \(\mathsf {\lim_{δx \to 0} \dfrac {δy}{δx} }\)
= \(\mathsf {\lim_{δx \to 0} }\) \(\mathsf{ [\text{ }^{n}C_1 x^{n-1} }\) + \(\mathsf{ \text{ }^{n}C_2 x^{n-2}{(δx)}}\) + \(\mathsf {\text{ }^{n}C_3 x^{n-3}{(δx)}^{2} }\) \(\mathsf{+\ … \ ]} \)

= \(\mathsf{ \text{ }^{n}C_1 x^{n-1} }\) + \(\mathsf{ \text{ }^{n}C_2 x^{n-2}.{0}}\) + \(\mathsf {\text{ }^{n}C_3 x^{n-3}.{0}^{2} }\) \(\mathsf{+\ …  } \)

= \(\mathsf {^{n}C_1 x^{n-1} }\) + 0 + 0 + …
= \(\mathsf {nx^{n-1} }\)

Thus we have \(\mathsf { \dfrac {d}{dx}(x^{n})} \) = \(\mathsf {nx^{n-1} }\)

Comments

What do you think?

0 Comments

Submit a Comment

Your email address will not be published. Required fields are marked *

Recommended Reads for You

Share This