ADVERTISEMENT

JUPITER SCIENCE

Derivative of \(\mathsf { x^{n} }\) using the First Principle

Let y = \(\mathsf {x^{n} }\)

∴ y + δy = \(\mathsf { {(x + δx)^{n}} }\)

∴ δy = y + δy – y = \(\mathsf { (x + δx)^{n} }\) – \(\mathsf { x^{n} }\)

or δy = \(\mathsf { [\text{ }^{n}C_0 x^{n}{(δx)}^{0} }\) + \(\mathsf {\text{ }^{n}C_1 x^{n-1}{(δx)}^{1}}\) + \(\mathsf {\text{ }^{n}C_2 x^{n-2}{(δx)}^{2}}\) + \(\mathsf {\text{ }^{n}C_3 x^{n-3}{(δx)}^{3}}\) \(\mathsf {+\ … higher\ powers\ of\ δx\ ] }\) – \(\mathsf {x^{n} }\)

or δy = \(\mathsf { [\text{ }^{n}C_0 x^{n} }\) + \(\mathsf {\text{ }^{n}C_1 x^{n-1}{(δx)}^{1}}\) + \(\mathsf {\text{ }^{n}C_2 x^{n-2}{(δx)}^{2}}\) + \(\mathsf {\text{ }^{n}C_3 x^{n-3}{(δx)}^{3}}\) \(\mathsf{+\ … \ ]} \) – \(\mathsf {x^{n} }\)

Now, \(\mathsf { ^{n}C_0 x^{n} = 1.x^{n} = x^{n} }\)

Cancelling \(\mathsf { x^{n} }\) on both sides, we get

δy = \(\mathsf{ [\text{ }^{n}C_1 x^{n-1}{(δx)}^{1} }\) + \(\mathsf{ \text{ }^{n}C_2 x^{n-2}{(δx)}^{2}}\) + \(\mathsf {\text{ }^{n}C_3 x^{n-3}{(δx)}^{3}}\) \(\mathsf{+\ … \ ]} \)

Dividing each side by δx, we get

\(\mathsf { \dfrac {δy}{δx} }\) = \(\mathsf{ [\text{ }^{n}C_1 x^{n-1} }\) + \(\mathsf{ \text{ }^{n}C_2 x^{n-2}{(δx)}}\) + \(\mathsf {\text{ }^{n}C_3 x^{n-3}{(δx)}^{2}}\) \(\mathsf{+\ … \ ]} \)

∴ \(\mathsf { \dfrac {dy}{dx} }\) =  \(\mathsf {\lim_{δx \to 0} \dfrac {δy}{δx} }\)
= \(\mathsf {\lim_{δx \to 0} }\) \(\mathsf{ [\text{ }^{n}C_1 x^{n-1} }\) + \(\mathsf{ \text{ }^{n}C_2 x^{n-2}{(δx)}}\) + \(\mathsf {\text{ }^{n}C_3 x^{n-3}{(δx)}^{2} }\) \(\mathsf{+\ … \ ]} \)

= \(\mathsf{ \text{ }^{n}C_1 x^{n-1} }\) + \(\mathsf{ \text{ }^{n}C_2 x^{n-2}.{0}}\) + \(\mathsf {\text{ }^{n}C_3 x^{n-3}.{0}^{2} }\) \(\mathsf{+\ …  } \)

= \(\mathsf {^{n}C_1 x^{n-1} }\) + 0 + 0 + …
= \(\mathsf {nx^{n-1} }\)

Thus we have \(\mathsf { \dfrac {d}{dx}(x^{n})} \) = \(\mathsf {nx^{n-1} }\)

Comments

What do you think?

0 Comments

Submit a Comment

Your email address will not be published. Required fields are marked *

Recommended Reads for You

Limits of functions : Limits of functions: A Complete Guide : Learn the basics of **limits of functions** with our comprehensive guide. Explore definitions, theorems, and applications to build a strong calculus foundation.

Limits of Functions: A Complete Guide

Understanding **limits of functions** is essential in calculus. This guide explains the epsilon-delta definition, theorems, and applications to help you master this fundamental concept.

Squeeze Theorem : Squeeze Theorem: Mastering Limits : Discover the power of the Squeeze Theorem! Learn how to find limits using bounding functions, with clear explanations and practical examples. Master this essential calculus technique!

Limits: The Squeeze Theorem Explained

The Squeeze Theorem is a calculus concept that uses bounding functions to determine the limit of a function. The article explains how it works and provides examples.

Limits at Infinity : Limits at Infinity: A Step-by-Step Guide : Explore Limits at Infinity! This guide provides clear explanations, step-by-step solutions, and examples to help you master calculus concepts. Learn how to evaluate limits at infinity.

Limits at Infinity

Learn how to solve Limits at Infinity with this comprehensive guide. Understand the concepts and techniques through clear examples and step-by-step solutions.

Share This