ADVERTISEMENT

JUPITER SCIENCE

Derivative of \(\mathsf { x^{n} }\) using the First Principle

Let y = \(\mathsf {x^{n} }\)

∴ y + δy = \(\mathsf { {(x + δx)^{n}} }\)

∴ δy = y + δy – y = \(\mathsf { (x + δx)^{n} }\) – \(\mathsf { x^{n} }\)

or δy = \(\mathsf { [\text{ }^{n}C_0 x^{n}{(δx)}^{0} }\) + \(\mathsf {\text{ }^{n}C_1 x^{n-1}{(δx)}^{1}}\) + \(\mathsf {\text{ }^{n}C_2 x^{n-2}{(δx)}^{2}}\) + \(\mathsf {\text{ }^{n}C_3 x^{n-3}{(δx)}^{3}}\) \(\mathsf {+\ … higher\ powers\ of\ δx\ ] }\) – \(\mathsf {x^{n} }\)

or δy = \(\mathsf { [\text{ }^{n}C_0 x^{n} }\) + \(\mathsf {\text{ }^{n}C_1 x^{n-1}{(δx)}^{1}}\) + \(\mathsf {\text{ }^{n}C_2 x^{n-2}{(δx)}^{2}}\) + \(\mathsf {\text{ }^{n}C_3 x^{n-3}{(δx)}^{3}}\) \(\mathsf{+\ … \ ]} \) – \(\mathsf {x^{n} }\)

Now, \(\mathsf { ^{n}C_0 x^{n} = 1.x^{n} = x^{n} }\)

Cancelling \(\mathsf { x^{n} }\) on both sides, we get

δy = \(\mathsf{ [\text{ }^{n}C_1 x^{n-1}{(δx)}^{1} }\) + \(\mathsf{ \text{ }^{n}C_2 x^{n-2}{(δx)}^{2}}\) + \(\mathsf {\text{ }^{n}C_3 x^{n-3}{(δx)}^{3}}\) \(\mathsf{+\ … \ ]} \)

Dividing each side by δx, we get

\(\mathsf { \dfrac {δy}{δx} }\) = \(\mathsf{ [\text{ }^{n}C_1 x^{n-1} }\) + \(\mathsf{ \text{ }^{n}C_2 x^{n-2}{(δx)}}\) + \(\mathsf {\text{ }^{n}C_3 x^{n-3}{(δx)}^{2}}\) \(\mathsf{+\ … \ ]} \)

∴ \(\mathsf { \dfrac {dy}{dx} }\) =  \(\mathsf {\lim_{δx \to 0} \dfrac {δy}{δx} }\)
= \(\mathsf {\lim_{δx \to 0} }\) \(\mathsf{ [\text{ }^{n}C_1 x^{n-1} }\) + \(\mathsf{ \text{ }^{n}C_2 x^{n-2}{(δx)}}\) + \(\mathsf {\text{ }^{n}C_3 x^{n-3}{(δx)}^{2} }\) \(\mathsf{+\ … \ ]} \)

= \(\mathsf{ \text{ }^{n}C_1 x^{n-1} }\) + \(\mathsf{ \text{ }^{n}C_2 x^{n-2}.{0}}\) + \(\mathsf {\text{ }^{n}C_3 x^{n-3}.{0}^{2} }\) \(\mathsf{+\ …  } \)

= \(\mathsf {^{n}C_1 x^{n-1} }\) + 0 + 0 + …
= \(\mathsf {nx^{n-1} }\)

Thus we have \(\mathsf { \dfrac {d}{dx}(x^{n})} \) = \(\mathsf {nx^{n-1} }\)

Comments

What do you think?

0 Comments

Submit a Comment

Your email address will not be published. Required fields are marked *

Recommended Reads for You

Find the limit: \( \lim_{x \to 3} (2x + 5) \)

Find the limit: \( \lim_{x \to 3} (2x + 5) \)

Find \( \lim_{x \to 3} (2x + 5) \) Solution:To solve this limit, we substitute the value of \( x \) directly because the function is continuous at \( x = 3 \).\( \lim_{x \to 3} (2x + 5) = 2(3) + 5 = 6 + 5 = 11 \)

read more
THEOREM# \( \lim_{\theta\to0} \dfrac{sinθ}{θ} \) = 1

THEOREM# \( \lim_{\theta\to0} \dfrac{sinθ}{θ} \) = 1

We have  \( \lim_{\theta\to0} { \sin\theta \over \theta } \) = 1 Consider the below diagram. We have r = radius of the circle.A = centre of the circle.The sector ⌔ formed by the arc BD subtends an angle θ at the centre. Case 1 : θ > 0 i.e. θ is +ve Let 0 ≤ θ ≤ \(...

read more
Share This