ADVERTISEMENT

JUPITER SCIENCE

Derivative of \({e}^x\) using First Principle 

Derivative of \({e}^x\) using the First Principle

Let \(y\) = \({e}^x\)
∴ \(y + δy\) = \({e}^{x + δx}\)
∴ \(δy\) = \({e}^{x + δx}\) – \({e}^x\)
or \(δy\) = \({e}^{x}\) . \( [ {e}^{δx} – 1 ]\)
Dividing each side by δx </h3>
or \(\dfrac {δy}{δx}\) = \( \dfrac { {e}^{x} . [ {e}^{δx} – 1 ] } {δx}\)

∴ \(\dfrac {dy}{dx} = \) \( \lim_{δx \to 0} \) \( \dfrac { {e}^{x} . [ {e}^{δx} – 1 ] } {δx}\)
or \(\dfrac {dy}{dx}\) = \( {e}^{x} .\) \( \lim_{δx \to 0} \) \( \dfrac { [ {e}^{δx} – 1 ] } {δx}\) —– (1)

Now, \( \lim_{δx \to 0} \) \( \dfrac { [ {e}^{δx} – 1 ] } {δx}\) =
\( \lim_{δx \to 0} \) \( \dfrac { [ 1 + \dfrac {{δx}}{1!} + \dfrac {{δx}^{2}}{2!} + \dfrac {{δx}^{3}}{3!} +\ … ] – 1} {δx}\)

= \( \lim_{δx \to 0} \) \( \dfrac { \dfrac {{δx}}{1!} + \dfrac {{δx}^{2}}{2!} + \dfrac {{δx}^{3}}{3!} +\ … } {δx}\)

Cancelling δx in both numerator and denominator, we get

\( \lim_{δx \to 0} \) \( \dfrac { [ {e}^{δx} – 1 ] } {δx}\) = \( \lim_{δx \to 0} \) \( \left( \dfrac {1}{1!} + \dfrac {{δx}^{1}}{2!} + \dfrac {{δx}^{2}}{3!} +\ … \right) \)

or \( \lim_{δx \to 0} \) \( \dfrac { [ {e}^{δx} – 1 ] } {δx}\) = \( \left( \dfrac {1}{1!} + \dfrac {{0}^{1}}{2!} + \dfrac {{0}^{2}}{3!} +\ … \right) \) = 1 —– (2)

∴ from equations (1) and (2), we get
\(\dfrac {dy}{dx} \) = \( {e}^{x} .\) 1 = \( {e}^{x} \)

Hence, \(\dfrac {d}{dx} \)\( \left({e}^{x} \right) \) = \( {e}^{x}\)

Comments

What do you think?

0 Comments

Submit a Comment

Your email address will not be published. Required fields are marked *

Recommended Reads for You

Find the limit: \( \lim_{x \to 3} (2x + 5) \)

Find the limit: \( \lim_{x \to 3} (2x + 5) \)

Find \( \lim_{x \to 3} (2x + 5) \) Solution:To solve this limit, we substitute the value of \( x \) directly because the function is continuous at \( x = 3 \).\( \lim_{x \to 3} (2x + 5) = 2(3) + 5 = 6 + 5 = 11 \)

read more
THEOREM# \( \lim_{\theta\to0} \dfrac{sinθ}{θ} \) = 1

THEOREM# \( \lim_{\theta\to0} \dfrac{sinθ}{θ} \) = 1

We have  \( \lim_{\theta\to0} { \sin\theta \over \theta } \) = 1 Consider the below diagram. We have r = radius of the circle.A = centre of the circle.The sector ⌔ formed by the arc BD subtends an angle θ at the centre. Case 1 : θ > 0 i.e. θ is +ve Let 0 ≤ θ ≤ \(...

read more
Share This