ADVERTISEMENT

JUPITER SCIENCE

Derivative of \({e}^x\) using First Principle 

Derivative of \({e}^x\) using the First Principle

Let \(y\) = \({e}^x\)
∴ \(y + δy\) = \({e}^{x + δx}\)
∴ \(δy\) = \({e}^{x + δx}\) – \({e}^x\)
or \(δy\) = \({e}^{x}\) . \( [ {e}^{δx} – 1 ]\)
Dividing each side by δx </h3>
or \(\dfrac {δy}{δx}\) = \( \dfrac { {e}^{x} . [ {e}^{δx} – 1 ] } {δx}\)

∴ \(\dfrac {dy}{dx} = \) \( \lim_{δx \to 0} \) \( \dfrac { {e}^{x} . [ {e}^{δx} – 1 ] } {δx}\)
or \(\dfrac {dy}{dx}\) = \( {e}^{x} .\) \( \lim_{δx \to 0} \) \( \dfrac { [ {e}^{δx} – 1 ] } {δx}\) —– (1)

Now, \( \lim_{δx \to 0} \) \( \dfrac { [ {e}^{δx} – 1 ] } {δx}\) =
\( \lim_{δx \to 0} \) \( \dfrac { [ 1 + \dfrac {{δx}}{1!} + \dfrac {{δx}^{2}}{2!} + \dfrac {{δx}^{3}}{3!} +\ … ] – 1} {δx}\)

= \( \lim_{δx \to 0} \) \( \dfrac { \dfrac {{δx}}{1!} + \dfrac {{δx}^{2}}{2!} + \dfrac {{δx}^{3}}{3!} +\ … } {δx}\)

Cancelling δx in both numerator and denominator, we get

\( \lim_{δx \to 0} \) \( \dfrac { [ {e}^{δx} – 1 ] } {δx}\) = \( \lim_{δx \to 0} \) \( \left( \dfrac {1}{1!} + \dfrac {{δx}^{1}}{2!} + \dfrac {{δx}^{2}}{3!} +\ … \right) \)

or \( \lim_{δx \to 0} \) \( \dfrac { [ {e}^{δx} – 1 ] } {δx}\) = \( \left( \dfrac {1}{1!} + \dfrac {{0}^{1}}{2!} + \dfrac {{0}^{2}}{3!} +\ … \right) \) = 1 —– (2)

∴ from equations (1) and (2), we get
\(\dfrac {dy}{dx} \) = \( {e}^{x} .\) 1 = \( {e}^{x} \)

Hence, \(\dfrac {d}{dx} \)\( \left({e}^{x} \right) \) = \( {e}^{x}\)

Comments

What do you think?

0 Comments

Submit a Comment

Your email address will not be published. Required fields are marked *

Recommended Reads for You

Limits of Functions: A Complete Guide

Limits of Functions: A Complete Guide

Understanding **limits of functions** is essential in calculus. This guide explains the epsilon-delta definition, theorems, and applications to help you master this fundamental concept.

read more
Limits at Infinity

Limits at Infinity

Learn how to solve Limits at Infinity with this comprehensive guide. Understand the concepts and techniques through clear examples and step-by-step solutions.

read more
Share This